Technical Appendix

A. Measures for inter-country divergence  

The Max-Min is equal to the difference between life expectancies in the lowest and the highest mortality populations:
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. 

Although this measure is simple and intuitively transparent, it has serious disadvantages. Most importantly, it is insensitive to changes in inter-country differences among countries situated between the two extremes. 

The DMM is a Gini-type measure that takes into account life expectancies and population weights for every population in the set and that has useful mathematical properties. It has already been applied in analyses of long-term changes in life expectancy disparity across all countries of the world (Moser et al., 2004) and in mortality differences across educational groups (Shkolnikov, Andreev, Jdanov et al., 2011). The DMM is defined as
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	Figure A.1. Estimation of the slope index of inequality 
in life expectancy across 197 countries of the world 
in 2005-2010.  
Source: United Nations. Department of Economic and Social Affairs. Population Division. Population Estimates and Projections Section. 
Available at  http://esa.un.org/unpd/wpp2008/index.htm 


where ei and ej are life expectancies (either at birth or at age 65) in populations i and j and pi and pj are population weights of populations i and j, respectively. The summation is carried out across all possible pairs of populations and the DMM is a mean weighted inter-population difference in length of life. Contributions of changing population weights and of changing lengths of life to the total change in DMM can be then easily estimated using the conventional Kitagawa’s decomposition (Shkolnikov, Andreev, Jdanov et al., 2011).

SII is based on modelling the length of life decline across individuals (from the “healthiest” to the “weakest” individual) by means of linear regression running across populations ordered by their life expectancy values. SII is a slope of the regression line: 
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where for country numbered i, its cumulative share is defined as
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if i>1, with pi and pk being the population weights of countries i and k. 

Although (for the sake of clarity) the above definition is based on the conventional OLS regression, it is preferable to use the weighted least square (WLS) regression (Wagstaff et al., 1991) that is adjusted for heteroscedasticity. Figure A.1 illustrates SII estimation of SII from data on life expectancies and population sizes in 197 countries of the world. 

DMM and SII are linked by an analytical relationship (Kakwani et al., 1997). This relationship makes it clear that SII is less dependent than DMM on changes in the population distribution by country. 

B. Measures of inter-individual lifetime disparity 

Usefullness of e† (e-dagger) has been highlighted by Vaupel and Canudas-Romo (2003). The e† quantifies average life expectancy losses due to death. It follows Keyfitz’s idea that “everybody dies prematurely” since every death “deprives the person involved of the reminder of his expectation of life” (Keyfitz 1977:61-68). For every elementary age interval [x, x+1), the number of years of life lost to death is equal to the number of the life table deaths in the age interval multiplied by the expectation of potential life of those dying at age (x+1). So, e† is to be computed as 
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where 
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is the mean age at death within the interval [x, x+1) and ex+1, the expectation of life at age x+1. It is possible to show, that 
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where 
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and 
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 are mean ages at death within the intervals [x, x+1) and [y, y+1), respectively.

The latter equation links e† to the diversity of ages at death and also shows its similarity with another measure of age-at-death disparity – the average inter-individual difference in the age at death (AID):
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The AID is the mean difference in the length of life across all possible pairs of individuals belonging to the life-table cohort.   
C. Countries’ positions according to mortality at adult ages and old-age survival 

Figure C.1 shows the inter-country variability in the probability to survive between ages 15 to 65 and in life expectancy at age 65. Among women, Japan, France, and Australia enjoy high survival to age 65 and a long length of life after 65. For men, the best positions are held by Japan, New Zealand, Canada, Switzerland, and Israel. The worst situation with respect to both dimensions is observed in Russia, Belarus, and Ukraine, followed by a group of other eastern European countries. 
Although, life expectancy at age 65 strongly correlates with survival from ages 15 to 65, some countries deviate from the overall regularity. In particular, in the post-soviet countries, old-age mortality seems to be relatively low compared to extremely high midlife mortality. In the group of low mortality countries, the U.S., Taiwan and France experience relatively high midlife mortality, while the Netherlands and Denmark experience relatively high old-age mortality.   
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Figure C.1. Life expectancy at age 65 and the probability of survival from age 15 to age 65 in 36 countries. Source: Calculations from the Human Mortality Database (available at www.mortality.org ).  

D. Summary of approaches to estimation of midlife mortality
The most detailed eight-parametric model covering the entire age range was proposed by Heligman and Pollard (1980) as follows:
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The second term 
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determines a shape similar to the log-normal density. It describes the midlife mortality with parameter D being responsible for the young-age accident hump and parameters E and F being responsible for the width and location of the midlife component with respect to the age axis. It is recommended that the model parameters are estimated by the weighted least squares with weights 
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(Heligman and Pollard, 1980). The H-P model has serious drawbacks related to its over-parameterization and to a numerical instability that induces large fluctuations in parameter estimates over time and across space (Rogers, 1986; Congdon, 1993; Dellaportas et al., 2001).    

Goldstein (2010) recently suggested that midlife mortality can be estimated as the actual mortality devoid the senescent mortality. That is to say, that the midlife mortality after a certain young age (somewhere between 12 and 15 years) can be estimated from the residuals: 
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are the point estimates of the force of mortality (the observed death rates) and 
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is the Gompertz function with its two parameters estimated from observed mortality rates at ages above 65 or 75. A similar procedure can be applied to the entire range of ages with the Siler model:
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In the latter equation, 
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are the infant and the old-age components of the Siler (1983) model. Age trajectories of the first and/or the second type of the residuals can be modeled by parametric or semi-parametric functions.     

Following the same idea, it is also possible to assess midlife mortality through relative rather than absolute residuals. The ratios to be assessed are: 
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 over all ages.
E. Estimation of modal age at death 

A straightforward estimation of the mode from empirical data can be difficult due to statistical fluctuations across single-years of age. The modal age at death can be better estimated from smoothed data. Smoothing can be performed locally over a few ages around the maximum or over a broader age range (e.g. ages 60+ or 70+). 

In the latter case, it is possible to use the following logistic function:
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Once the parameters a and alpha are known, the modal age at death is: 
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F. Cause-of-death decompositions of measures of survival and longevity 

In the multiple-decrement life table (MDL), survival and the length of life functions at any age x are presented as:
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where j designates a specific cause of death, the cause-specific survival fraction 
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and the expected cause-specific age at death 
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is the share of deaths from cause j among all deaths within the elementary age interval [x, x+1). For the entire age range, MDL allows to represent life expectancy 
[image: image31.wmf]0

e

 as the sum of cause-specific partitions
[image: image32.wmf]j

j

e

l

0

0

.
Lifetime losses can also be split by cause of death:       
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Survival from age x to age x+a can be represented by the product of the crude cause-specific survival functions offset for the whole population exposed to the risk of dying from cause j and other causes. 
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The life-table aging rate (LAR) is defined as  
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It is possible to see how the all-cause-mortality LAR at age x depends on the partial elimination of causes of death that would somewhat diminish the death rates in neighboring ages.    
An aggregate survival measure G in populations A and B is seen as functional dependent on a matrix M of age-cause-specific death rates M(x, j, A) and M(x, j, B), respectively. According to the stepwise algorithm, the component corresponding to the age-cause element (x1, j1) is calculated as an effect on G of the replacement of M(x1, j1, A) by M(x1, j1, B). The second component corresponding to the age-cause element (x2, j2) is obtained by substituting M(x2, j2, B) to M(x2, j2, A) while keeping the first element of M at B. The third component corresponding to the age-cause element (x3, j3) is obtained by substituting M(x3, j3, B) to M(x3, j3, A) while keeping the first and the second elements of M at B. Proceeding in this manner, the component corresponding to the last element (xN, jN) (N = number of ages times number of causes) is obtained by substituting M(xN, jN, B) to M(xN, jN, A) while keeping the previous N-1 elements of M at B. 

Finally, the whole matrix ||M(x, j, A)|| is replaced by matrix ||M(x, j, B)|| and the value G(M(A)) transforms into G(M(B)). The final value of each component is obtained by averaging its estimates over all mathematically possible replacement sequences. 

For many measures, such as life expectancy, AID, and e†, a simpler replacement algorithm can be used. First, age-specific components are obtained by carrying out a linear stepwise replacement, progressing from young to old ages. The component corresponding to age [x, x+1) is computed as                  
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In this equation, M[x] is a vector of age-specific death rates with elements M(y, B) for ages 0≤y<x and elements M(y, A) for ages y(x and M[x+1] is a vector of age-specific death rates with elements
 M(y, B) for ages 0≤y<x+1 and elements M(y, A) for ages y(x+1. Second, the component corresponding to age [x, x+1) and cause j is computed as 
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  All of these measures will be applied to the large set of national cause-specific mortality series included in the database to be constructed as part of this project so as to measure the contribution of specific causes of death to the diverging trends in mortality across and within the study countries.
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